Correction des exercices de révisions

1. Produits remarquables

$$\frac{36}{25}x^8 - 9$$

$$0,064x^3 - 0,96x^2 + 4,8x - 8$$

$$9x^6 - 30x^5 + 25x^4 + 36x^3 - 60x^2 + 36$$

$$\frac{-296}{25}x^8 - \frac{304}{25}x^4 - \frac{74}{25}$$

$$0,008x^9 + 0,012x^6 + 0;006x^3 + 0,001$$

$$64x^6 - 125$$

2. Mise en évidence d'un nombre

$$5(\frac{7}{40}x - \frac{1}{15})$$

3. Egalité de polynômes.

Développer le cube et égaler les coefficients des termes semblables Les valeurs de a, b, c, d sont a = 8; b = 18; c = 10,8; d = 27

$$r = p(2) = 49$$

5. Grille de Horner

P(x) est divisible par
$$(x + 2)$$
 ssi p(-2) = 0 :
on résout -8 + 10a + 32 - 7a = 0, ce qui donne a = -8
P(x) devient $x^3 + 40x + 8x^2 + 56$
On calcule q(x) par la grille de Horner :
1 8 40 56
-2 -12 -56
1 6 28 0
q(x) = $x^2 + 6x + 28$

6. Pour simplifier la fraction, il faut factoriser le numérateur et le dénominateur :

$$\frac{x^2 - 10x + 25}{25 - x^2} = \frac{(x - 5)^2}{(5 + x)(5 - x)} = \frac{(x - 5)^2}{-(5 + x)(x - 5)} = \frac{x - 5}{-(5 + x)} = -\frac{x - 5}{5 + x}$$
C.E. $x \neq \pm 5$

7. Division écrite

7x ⁴ -7x ⁴	+5x ³	+0x²	-3x	+9	2x²-1
-7x ⁴		$+7/2x^2$			$7/2x^2 + 5/2x + 7/4$
	5x³	+7/2x ²	-3x	+9	
	-5x³		+5/2x		
		7/2x ²	-1/2x	+9	
		-7/4x ²		+7/4	
			-1/2x	+43/4	

$$q(x) = \frac{7}{2}x^2 + \frac{5}{2}x + \frac{7}{4}$$
$$r = \frac{-1}{2}x + \frac{43}{4}$$

8. Méthode des coefficients indéterminés :

num : degré 4 dénom : degré 2

d'où quotient : degré (4-2) = 2 $q(x) = ax^2 + bx + c$

reste : degré <2 r(x) = dx + e

$$\frac{7x^4 - 2x^2 + 5}{x^2 + 1} = ax^2 + bx + c + \frac{dx + e}{x^2 + 1}$$

$$7x^4 - 2x^2 + 5 = (ax^2 + bx + c)(x^2 + 1) + dx + e$$

$$7x^4 - 2x^2 + 5 = ax^4 + ax^2 + bx^3 + bx + cx^2 + c + dx + e$$

$$\begin{cases} 7 = a \\ 0 = b \\ -2 = a + c \\ 0 = b + d \end{cases} \begin{cases} c = -2 - 7 = -9 \\ d = 0 \\ e = 5 - (-9) = 14 \end{cases}$$

$$q(x) = 7 x^2 - 9$$
 $r(x) = 14$

Angles et cercles:

- 9. angle tangentiel = 7°
- 10. longueur de l'arc = 21,3333 cm; r = 61 cm; aire du secteur = 650 cm²
- 11. I = 2,62 cm et s = 3,93 cm²
- 12. l'angle au centre = $2^* \left| \stackrel{\wedge}{BAD} \right| = \frac{3,5.360}{2\pi 2} = 100^\circ$ d'où l'angle BÂD vaut 50°

l'angle BCD est le supplémentaire de l'angle BAD d'où $\left| \stackrel{\circ}{BCD} \right| = 180^{\circ} - 50^{\circ} = 130^{\circ}$

13. on trace le segment [AC] on trace sur [AC] l'arc capable d'amplitude 25° (C) on trace une droite parallèle à AC à 3cm (d) les points B₁ et B₂ sont les points d'intersection de C et d rem : par symétrie orthogonale d'axe AC, on obtient B₃ et B₄

Angles et mesures:

- 14. 10,54722...
- 15. 20°18'288" = 10°22'48"

16.
$$\frac{83\pi}{45}$$
 355° 112,5°

17. 140° 240°
$$\frac{6\pi}{5}$$
 $\frac{12\pi}{11}$

réponses : 32° , 92° , 152°; 212 ; 272°; 332°

19. N° quadrants: 3; 2; 2; 2; 4; 2°

Triangles rectangles:

$$20.d = 3,12 \text{ cm}$$
 et $\sin \dots = 0,625 \text{ d'où angle} = 38^{\circ}$

h = 64 m

Puissances et radicaux:

21. Simplifier les radicaux (a,b,c >0)

$$\sqrt{900} = 30 \; ; \; \sqrt{1728} = \sqrt{2^6 3^3} = 2^3 3\sqrt{3} = 24\sqrt{3}$$

$$\sqrt{5^{50}} = 5^{25} \; ; \; \sqrt{ab^8 c^7} = b^4 c^3 \sqrt{ac} \; ; \; \sqrt{\frac{a^{16} bc^7}{81a^5 c^9}} = \sqrt{\frac{a^{11} b}{81c^2}} = \frac{a^5 \sqrt{ab}}{9c}$$

$$\sqrt[7]{a^{23} b^6 c^8} = a^3 c \sqrt[7]{a^2 b^6 c}$$

22. Rendre rationnel
$$\frac{5}{2\sqrt{6} - 3\sqrt{7}} = \frac{5(2\sqrt{6} + 3\sqrt{7})}{(2\sqrt{6})^2 - (3\sqrt{7})^2} = \frac{5(2\sqrt{6} + 3\sqrt{7})}{24 - 63} = \frac{5(2\sqrt{6} + 3\sqrt{7})}{-39}$$

23. Calculer et simplifier
$$\frac{a^3a^9(a^5)^7}{a^{12}} = \frac{a^3a^9a^{35}}{a^{12}} = a^{3+9+35-12} = a^{35}$$

24. Ecrire sous forme de radicaux et simplifier :

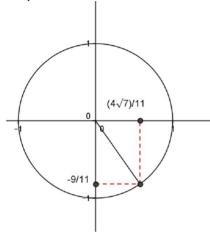
$$a^{\frac{28}{15}} = \sqrt[15]{a^{28}} = a^{15}\sqrt[3]{a^{13}}$$
; $a^{-\frac{5}{21}}$

$$a^{-\frac{5}{21}} = \frac{1}{a^{\frac{5}{21}}} = \frac{1}{\sqrt[2]{a^5}}$$

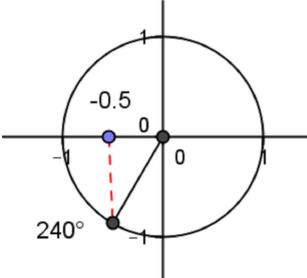
25. Exprimer x en fonction de
$$y: y = \frac{-4x^5 - 10}{17}$$
 : $y = 2\sqrt[3]{3x^2 + 1} - 5$

$$x = \sqrt[5]{\frac{17y + 10}{-4}} \quad ; \quad x^2 = \frac{\left(\frac{y+5}{2}\right)^3 - 1}{3} \quad d'où \quad x = \pm \sqrt{\frac{\left(\frac{y+5}{2}\right)^3 - 1}{3}}$$

Sin et cos:

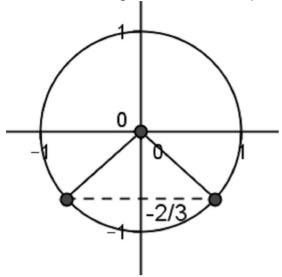

1) Donner le N° Q et le signe

$$\sin 256^{\circ}$$
 ; $\cos (-70^{\circ})$; $\sin \frac{9\pi}{11}$; $\cos \frac{13\pi}{12}$; $\sin \frac{-11\pi}{15}$; $\cos \frac{25\pi}{23}$


2) Calculer $\cos \alpha \sin \alpha = -\frac{9}{11} \ avec \ \alpha \in [\frac{3\pi}{2}, 2\pi[$

$$\cos \alpha = \pm \sqrt{1 - (\frac{-9}{11})^2} = \pm \sqrt{\frac{112}{121}} = \pm \frac{4\sqrt{7}}{11}$$

le signe '-' est à rejeter car α appartient au 4^{ème} Q (cos α >0) Représenter sur une cercle trigonométrique : sin α et de là, α et cos α


3) Sur un cercle trigonométrique, dessiner un angle α de 240° et <u>mesurer</u> cos α . A l'aide de la valeur mesurée, <u>calculer</u> la valeur de sin α

FF $\cos^2\alpha + \sin^2\alpha = 1$

$$\sin \alpha = -\sqrt{1 - 0.25} = -\sqrt{0.75} \ ou - \frac{\sqrt{3}}{2}$$

4) Sur un cercle trig., dessiner un ou plusieurs angles α tel que sin α = -2/3

5) Résoudre (mesure générale) $\sin 2x = 1$

 $\sin 2x = 1$

D'après le cercle trig, l'angle dont le sin vaut « 1 » est un angle de 90° d'où $2x = 90^{\circ}$

mes générale : $2x = 90^{\circ} + k 360^{\circ}$ $x = 45^{\circ} + k 180^{\circ}$